Програма з математики (алгебра і початки аналізу та геометрія) для учнів 10-11 класів загальноосвітніх навчальних закладів



Скачати 59,43 Kb.
Сторінка2/24
Дата конвертації26.03.2020
Розмір59,43 Kb.
ТипПояснювальна записка
1   2   3   4   5   6   7   8   9   ...   24
Практична компетентність передбачає, що випускник загальноосвітнього навчального закладу:

  • вміє будувати і досліджувати найпростіші математичні моделі реальних об’єктів, процесів і явищ, задач, пов’язаних із ними, за допомогою математичних об’єктів, відповідних математичних задач;

  • вміє оволодівати необхідною оперативною інформацією для розуміння постановки математичної задачі, її характеру й особливостей; уточнювати вихідні дані, мету задачі, знаходити необхідну додаткову інформацію, засоби розв’язування задачі; переформульовувати задачу; розчленовувати задачі на складові, встановлювати зв’язки між ними, складати план розв’язання задачі; вибирати засоби розв’язання задачі, їх порівнювати і застосовувати оптимальні; перевіряти правильність розв’язання задачі; аналізувати та інтерпретувати отриманий результат, оцінювати його придатність із різних позицій; узагальнювати задачу, всебічно її розглядати; приймати рішення за результатами розв’язання задачі;

  • володіє технікою обчислень, раціонально поєднуючи усні, письмові, інструментальні обчислення, зокрема наближені;

  • вміє проектувати і здійснювати алгоритмічну та евристичну діяльність на математичному матеріалі;

  • вміє працювати з формулами (розуміти змістове значення кожного елемента формули, знаходити їх числові значення при заданих значеннях змінних, виражати одну змінну через інші);

  • вміє читати і будувати графіки функціональних залежностей, досліджувати їх властивості;

  • вміє класифікувати і конструювати геометричні фігури на площині й у просторі, встановлювати їх властивості, зображати просторові фігури та їх елементи, виконувати побудови на зображеннях;

  • вміє вимірювати геометричні величини на площині й у просторі, які характеризують розміщення геометричних фігур (відстані, кути), знаходити кількісні характеристики фігур (площі та об’єми);

  • вміє оцінювати шанси настання тих чи інших подій.

Практична компетентність є важливим показником якості математичної освіти, природничої підготовки молоді. Вона певного мірою свідчить про готовність молоді до повсякденного життя, до найважливіших видів суспільної діяльності, до оволодіння професійною освітою.

Формування навичок застосування математики є однією із головних цілей навчання математики. Радикальним засобом реалізації прикладної спрямованості шкільного курсу математики є широке систематичне застосування методу математичного моделювання протягом усього курсу. Це стосується введення понять, виявлення зв’язків між ними, характеру ілюстрацій, системи вправ і, нарешті, системи контролю. Інакше кажучи, математики треба так навчати, щоб учні вміли її застосовувати. Забезпечення прикладної спрямованості викладання математики сприяє формуванню стійких мотивів до навчання взагалі і до навчання математики зокрема.

Реалізація практичної спрямованості в процесі навчання математики означає:


  1. створення запасу математичних моделей, які описують реальні явища і процеси, мають загальнокультурну значущість, а також вивчаються у суміжних предметах;

  2. формування в учнів знань та вмінь, які необхідні для дослідження цих математичних моделей;

  3. навчання учнів побудові і дослідженню найпростіших математичних моделей реальних явищ і процесів.

Практична спрямованість математичної освіти суттєво підвищується завдяки впровадженню інформаційно-комунікаційних засобів у навчання математики.

Одним із найважливіших засобів забезпечення практичної спрямованості навчання математики є встановлення міжпредметних зв’язків математики з іншими предметами, у першу чергу з природничими. Особливої уваги заслуговує встановлення, зв’язків між математикою та інформатикою — двома освітніми галузями, які є визначальними у підготовці особистості до життя у постіндустріальному, інформаційному суспільстві. Широке застосування інформаційно-комунікаційних засобів у навчанні математики доцільне для проведення математичних експериментів, практичних занять, інформаційного забезпечення, візуального інтерпретування математичної діяльності, проведення досліджень.



Крім того, навчання математики має зробити певний внесок у формування ключових компетентностей.



Ключові компетентності

Компоненти

1

Спілкування державною (і рідною у разі відмінності) мовами

Уміння: ставити запитання і розпізнавати проблему; міркувати, робити висновки на основі інформації, поданої в різних формах (у таблицях, діаграмах, на графіках); розуміти, пояснювати і перетворювати тексти математичних задач (усно і письмово), грамотно висловлюватися рідною мовою; доречно та коректно вживати в мовленні математичну термінологію, чітко, лаконічно та зрозуміло формулювати думку, аргументувати, доводити правильність тверджень; поповнювати свій словниковий запас.




Поділіться з Вашими друзьями:
1   2   3   4   5   6   7   8   9   ...   24


База даних захищена авторським правом ©pedagogi.org 2019
звернутися до адміністрації

    Головна сторінка