Програма з математики (алгебра і початки аналізу та геометрія) для учнів 10-11 класів загальноосвітніх навчальних закладів


Рекомендації щодо роботи з програмою



Скачати 59,43 Kb.
Сторінка12/24
Дата конвертації26.03.2020
Розмір59,43 Kb.
ТипПояснювальна записка
1   ...   8   9   10   11   12   13   14   15   ...   24
Рекомендації щодо роботи з програмою. Однією з головних змістових ліній курсу «Математика» в старшій школі є функціональна лінія. Тому доцільно розпочинати вивчення курсу з теми «Функції, їхні властивості та графіки» — його фундаменту. У цій темі здійснюється повторення, систематизація матеріалу стосовно функцій, який вивчався в основній школі, його поглиблення і розширення, зокрема, за рахунок степеневих функцій. Головною метою опрацювання цієї теми є підготовка учнів до вивчення нових класів функцій (тригонометричних, степеневих, показникових, логарифмічних), а також мотивація необхідності розширення апарату дослідження функцій за допомогою похідної. Лейтмотивом теми має бути моделювання реальних процесів за допомогою функцій. Оскільки робота з діаграмами, рисунками, графіками є одним із поширених видів практичної діяльності людини, то до головних завдань вивчення теми слід віднести розвиток графічної культури учнів. Ідеться передусім про «читання» графіків, тобто про встановлення властивостей функції за її графіком.

У наступних темах розширюються класи функцій, які вивчалися в основній школі. У темах «Тригонометричні функції» і «Показникова та логарифмічна функції» вміння досліджувати функції, які сформовані в першій темі, закріплюються і застосовуються до моделювання закономірностей коливального руху, процесів зростання та спадання. В уявленні учнів характер фізичного процесу має асоціюватись із відповідною функцією, її графіком, властивостями.

Важливим завершенням функціональної лінії курсу «Математика» є розгляд понять похідної та інтеграла, які є необхідним інструментом дослідження руху. Основні ідеї математичного аналізу виглядають досить простими і наочними, якщо викладати їх на тому інтуїтивному рівні, на якому вони виникли історично і який цілком задовольняє потреби загальноосвітньої підготовки учнів. Не варто захоплюватися формально - логічною строгістю доведень та відводити багато часу суто технічним питанням і конструкціям. Більше уваги слід приділити змісту ідей і понять, їх геометричному і фізичному тлумаченню. Вивчення інтегрального числення зазвичай починається з розгляду сукупності первісних даної функції, яку доцільно розуміти як сукупність функцій, які задовольняють умову у' = f(х).

У курсі математики старшої школи набувають розвитку й інші змістові лінії: обчислення, вирази і перетворення, рівняння та нерівності.

Розглядаються обчислення, оцінювання та порівняння значень тригонометричних, степеневих, показникових, логарифмічних виразів.

Певне місце в курсі займають тотожні перетворення тригонометричних, степеневих та логарифмічних виразів. Тригонометричні функції пов’язані між собою багатьма співвідношеннями. Їх умовно можна поділити на три групи. Перша група формул встановлює зв’язок між координатами точки кола — це так звані основні співвідношення. Друга група формул має своїм джерелом симетрію і періодичність руху точки по колу. Вона складається із формул зведення. Третю групу тотожностей породжують повороти точки навколо центра кола. Формули додавання пов’язують координати точок .

Не слід приділяти занадто багато уваги громіздким перетворенням тригонометричних, степеневих і логарифмічних виразів і спеціальним методам розв’язування тригонометричних, показникових і логарифмічних рівнянь. Вони, як правило, не знаходять практичних застосувань.

У старшій школі розширюються класи рівнянь, нерівностей, їх систем, методи розв’язування, сфери застосування. Вивчення цього матеріалу пов’язується з властивостями відповідних функцій.

Як і в основній школі, геометрія у старшій школі має навчати учнів правильному сприйманню навколишнього світу. Але для цього стереометрія має більше можливостей. Ідеться про розвиток логічного мислення, формування просторової уяви, вироблення навичок застосування геометрії до розв’язання практичних завдань. Розв’язання цих завдань розпочинається з розгляду теми «Паралельність прямих і площин у просторі». У ній закладається фундамент для вивчення стереометрії — геометрії простору. Особливу увагу необхідно приділити реалізації прикладної спрямованості теми. Головним внеском у розв’язання зазначеної проблеми є формування чітких уявлень про взаємовідношення геометричних об’єктів (прямих, площин) і відношень між ними з об’єктами навколишнього світу. Важливе місце в темі необхідно відвести навчанню учнів зображенню просторових фігур на площині і застосуванню цих зображень при розв’язуванні задач.

В процесі вивчення теми «Перпендикулярність прямих і площин у просторі» закладається фундамент для вимірювань у стереометрії. Значної уваги вимагає формування таких фундаментальних понять, як загальне поняття відстані, поняття кута як міри розміщення прямих і площин та двогранного кута як геометричної фігури. Із введенням відношення перпендикулярності прямих і площин, перпендикулярності площин, а також відстаней і кутів моделюючі можливості курсу стереометрії значно зростають. Розгляд теми «Координати і вектори» дозволить повторити навчальний матеріал із стереометрії і застосувати новий підхід до вивчення прямих і площин у просторі. Окремим завданням вивчення теми «Координати і вектори» є узагальнення векторного і координатного методів у випадку простору.

У темах «Многогранники», «Тіла обертання» розглядаються основні види геометричних тіл та їхні властивості. При вивченні цих тем важливим є підхід, що передбачає формування навичок конструювання і класифікації тіл та їх поверхонь. Такий підхід вимагає використання конструктивних означень. Конструктивні означення дозволяють встановити спільність між призмами і циліндрами, пірамідами та конусами. У процесі вивчення теми «Об’єми та площі поверхонь геометричних тіл» мають бути розглянуті різні методи обчислення об'ємів і площ поверхонь. Особливу увагу необхідно приділити методу розбиття, який має велике практичне значення. Використання аналогії між вимірюваннями площ плоских фігур і об'ємів сприятиме засвоєнню матеріалу учнями. При вивченні площ поверхонь тіл доцільно широко користуватися природною та важливою з практичної точки зору ідеєю розгортки.

Програма передбачає реалізацію діяльнісного підходу до навчання математики як головної умови забезпечення ефективності математичної освіти.

Навчальний процес у старшій школі потребує і робить можливим використання специфічних форм та методів навчання. Можливість їх використання зумовлена віковими особливостями старшокласників, набутими в основній школі навичками самостійної роботи, рівнем розвинення загальнонавчальних і пізнавальних видів діяльності. Основною формою проведення занять залишається система уроків: вивчення нового матеріалу, формування вмінь розв’язувати задачі, узагальнення та систематизації знань, контролю і корекції знань. Поряд із цим використовується шкільна лекція, семінарські та практичні заняття, інтегровані уроки математики з профільним предметом тощо).

Реалізація рівневої диференціації на практичних заняттях є однією з головних умов ефективності навчання. Особливістю практичних занять має бути постійне залучення учнів до самостійної роботи. Доцільно спільно обговорити ідею та алгоритм розв’язування певного класу задач. Після цього кожний учень може виконувати запропоновану систему вправ, спілкуючись із вчителем.

Важливе місце в організації навчання математики має посісти вдосконалення, у порівнянні з основною школою, системи самостійної роботи учнів. Формуванню відповідних мотивів до самостійної роботи сприяє застосування завдань на рисунках, контрольних запитань, зокрема прикладного характеру, домашніх робіт з дослідження конкретних класів функцій, геометричних конструкцій.

Важливим засобом навчання можуть стати контрольні запитання і тестові завдання, які спрямовані не на відтворення означень, фактів, формул, а на з’ясування елементів та структури означень математичних об’єктів; їх місця в системі інших понять; операцій, які можна виконувати з об’єктом, його особливостей та властивостей. Подібні контрольні запитання стимулюють продуктивне мислення учнів, сприяють неформальному засвоєнню теоретичного матеріалу, формують навички порівняння, класифікації, узагальнення, застосування математичних понять і об’єктів.

Обов’язковим елементом технології навчання має бути постійна діагностика навчальних досягнень учнів. Вивчення кожної теми слід починати з виконання діагностичної роботи, що дає змогу встановити рівень володіння матеріалом попередньої теми. За результатами діагностичної роботи виявляються прогалини у підготовці учня, його досягнення, що допомагає спрямувати зусилля його та викладача на поліпшення стану справ.

Значне місце у технології навчання має посідати тематичний контроль навчальних досягнень як засіб управління навчальним процесом. До кожної теми система контролю може складатися з тематичної контрольної роботи, що, як правило, включає дві частини — теоретичну і тестову.

Обов’язковим елементом навчання мають стати індивідуальні завдання з теми. Їх варто пропонувати на завершальному етапі вивчення теми для самостійного опрацювання після всіх контролюючих заходів. Мета завдань — охопити матеріал теми в цілому, привернути увагу до головного, дати додаткові приклади і пояснення окремих складних моментів, підкреслити особливості й тонкощі, переконати учнів у можливості розв’язання задач основних типів. Індивідуальні завдання перевіряються, оцінюються вчителем та захищаються учнем. Варто планувати виконання індивідуальних завдань, які передбачають ознайомлення як з розвитком математики в історичному аспекті (наприклад, з теми «Скільки існує геометрій?»), так і змістовних («Перспектива», «Математика і соціологія»).

Одним з ефективних засобів удосконалення навчання, особливо у старшій школі, є модульне проектування навчального процесу, яке передбачає, що одиницею виміру навчального процесу є не урок, а певна сукупність уроків, яка охоплює логічно пов’язаний блок навчальних питань теми.

Програма передбачає насамперед оволодіння загальною математичною культурою, вироблення математичного стилю мислення, тобто вміння класифікувати об’єкти, встановлювати закономірності, виявляти зв’язки між різними явищами, приймати рішення тощо.




Поділіться з Вашими друзьями:
1   ...   8   9   10   11   12   13   14   15   ...   24


База даних захищена авторським правом ©pedagogi.org 2019
звернутися до адміністрації

    Головна сторінка